
A HUMAN FACTORS ENGINEERING EDUCATION PERSPECTIVE 
ON DATA SCIENCE, MACHINE LEARNING AND AUTOMATION 
 

Daniel Hannon1, Esa Rantanen2, Ben Sawyer3, Raymond Ptucha2, Ashley Hughes4, Katherine Darveau1,5, 
and John D. Lee6 

 
1Tufts University, 2Rochester Institute of Technology, 3University of Central Florida, 4University of Illi-

nois, 5GE Aviation, 6University of Wisconsin-Madison
 

The explosion of data science (DS) in all areas of technology coupled with the rapid growth of machine 
learning (ML) techniques in the last decade create novel applications in automation. Many working with 
DS techniques rely on the concept of “black boxes” to explain how ML works, noting that algorithms find 
patterns in the data that humans might not. While the mathematics are  still being developed, the implica-
tions for the application of ML, specifically to questions of automation, also are being studied, but still re-
main poorly understood. The decisions made by ML practitioners with respect to data selection, model 
training and testing, data visualization, and model applications remain relatively unconstrained and have 
the potential to yield unexpected results at the systems level. Unfortunately, human factors engineers con-
cerned with automation often have limited training and awareness of DS and ML applications and are una-
ble to provide the meaningful guidance that is needed to ensure the future safety of these newly emerging 
automated systems. Moreover, undergraduate and graduate programs in human factors engineering (HFE) 
have not kept pace with these developments and future HFEs may continue to find themselves unable to 
contribute meaningfully to the development of automated systems based on algorithms derived from ML. 
In this paper, human factors engineers and educators explore some of the challenges to our understanding 
of automation posed by specific ML techniques and contrast this with an outline of some of the historical 
work in HFE that has contributed to our understanding of safe and effective automation. Examples are pro-
vided from more conventional applications using both supervised and unsupervised learning techniques, 
that are explored with respect to implications for algorithm performance, use in system automation, and the 
potential for unintended results. Implications for human factors engineering education are discussed.  
 

INTRODUCTION 
 

Data science (DS) is one of the hottest topics in technol-
ogy circles today, with tremendous opportunities throughout 
the tech world, the Silicon Valley, and on university and college 
campuses world-wide. Along with DS comes the promise of ar-
tificial intelligence (AI), machine learning (ML), and automa-
tion. DS is affecting almost all aspects of our lives, from smart 
appliances and consumer products to our interactions with 
banks and financial services, as well as throughout healthcare.  

This explosion in DS has important implications for the 
field of human factors engineering (HFE), particularly with re-
spect to human-machine automation. A database search of “En-
gineering Village” on “machine learning” and “human factors” 
yielded 2 returns in 1998, 19 returns in 2008, and 86 returns in 
2018. Although a low number in comparison to 31,349 for all 
for “machine learning” alone in 2018, it is evident that ML is 
having a growing influence in the field of human factors.  

There is much evidence of ML and automation in our daily 
lives as we gather information from various search engines and 
go shopping online. Almost all are familiar with recommender 
systems. Part of what makes these interactions so compelling is 
how natural and accurate they appear. Many people have  ex-
perienced  a shopping website show exactly what they are look-
ing for without asking it, almost magically. 

But, as history has shown us, automation designed without 
the human user in mind can lead to unintended consequences. 
Are we in such a state again? What should concern. us? Are 
HFEs prepared to offer effective human-centered solutions?  

In this paper, we review basic mechanisms of how ML 
works. We explore implications for the way algorithms work 
and the implications of the decisions that are made in the design 
and creation of the models. Two ML examples are considered 
in an effort to reveal how ML practices could result in unin-
tended consequences in systems designed based on these algo-
rithms. Next, we take a step away from ML, and review some 
of the fundamental concepts we currently teach in HF curricu-
lum about human-machine interaction and automation. Finally, 
the paper concludes with a consideration of the way in which 
HFE training programs should be considering the inclusion of 
DS and ML to better prepare researchers and practitioners to 
engage in the design of the automated systems of the future.  
 

OVERVIEW OF MACHINE LEARNING 
 

The field of DS has provided us with an almost over- 
whelming array of techniques for digesting and processing vast 
data stores. Among them, ML processes provide the oppor-
tunity to identify patterns in large datasets that are beyond the 
perception of researchers. Often, the algorithms require multi-
ple iterations as they work to optimize the solution to a particu-
lar objective, giving these algorithms the illusion of having 
“learned” something. And indeed, ML practitioners, particu-
larly those who use neural networks, often refer to the model as 
a “black box” of sorts since the patterns that are found do not 
necessarily align with the more conventional thinking that a re-
searcher may bring to a problem (Shukla, 2018; Ch. 1). Com-
bined with the difficulty of representing outcomes from multi-
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dimensional data spaces, the field of ML at times is character-
ized as a “black art”, practiced by a few who are in the know 
and to the exclusion of others who could benefit from the use 
of this rich set of research tools (see Gillies et al., 2016).  

For the purposes of explication, two examples of ML tech-
niques are provided in somewhat generic form that will serve to 
illustrate both the techniques as well as highlight the level of 
“art” that is involved in the decision making in the use of these 
tools. It will be these decisions that will later be explored as 
elements of concern in the design of future automated systems.  
 
Recommender System Example  
 

Perhaps one of the most ubiquitous of ML applications are 
recommender systems. These work by first having gathered 
enormous amounts of data on people who are doing the same 
activity (e.g., shopping), and noting the co-occurrence of their 
decisions. In the case of online shopping, this allows the owner 
of the data to know how often two items are purchased, and 
more importantly, by whom, when, etc., which allows them to 
target suggestions to individual consumers. As noted previ-
ously, the results can be quite appealing to a consumer who is 
provided with additional suggestions that meet their needs. 

A recommender system may be based on a ML technique 
such as collaborative filtering (Coutinho, 2016), in which a da-
taset of consumer purchases is parsed based on instances unique 
to specific users and to specific categories of users (e.g., mar-
ried, college educated males, over 50, living in New England). 
These data are often referred to as the “ground truth” in that 
they represent actual purchases by people in the specific cate-
gory. The collaborative filtering process is then used to identify 
pairings of similar purchases between different people to iden-
tify how close or far apart people are with respect to their pur-
chasing decisions. The algorithm learns these parings, allowing 
the algorithm to identify the likelihood of a product being of 
interest to a specific category of consumer based on the attrib-
utes of the product and then be able to predict the likelihood 
that a consumer will want other products.  

The collaborative filtering process works based on an 
equation like  

 
 
 
 
 

 
where A and B represent vectors of product ratings from two 
different people. In a typical application, the algorithm is used 
to determine distances between pairs of people, which is essen-
tially an effort to find the minimal differences across all in- 
stances in the data set. The goal is to find the people with the 
smallest differences to make predictions from one to the other.  

In some ML applications, after learning the relationships 
in the initial training data with respect to those items a person 
in a category has purchased and not purchased, a held-out test 
set is used to see if the model is now able to generalize and 
make predictions on unforeseen data. The performance on these 
unforeseen data samples reveals the success of the algorithm.  

It is worth noting that the process of labeling the data in 
the training data set is generally referred to as “ground truth 
classification,” and requires a human to decide what elements 
of the data constitute a particular label. In this case, it means 
deciding what constitutes a purchase and what does not.  

Aside from needing a large set of data for the training and 
test data sets, the ML practitioner is faced with a number of de-
cisions when setting up a recommender system. These include:	
• Deciding how to label the training data. What will count as 

a purchase? If a person buys and then returns an item, or if 
a person buys a specific quantity and then reduces that 
quantity, should that change the label? How dependent is 
the algorithm on the specific way the data are labeled?  

• Choosing representative training data. Are the data repre-
sentative of the population who are being served? Are the 
data representative of the situations that will be encoun-
tered in the future? 

• What is the influence of the optimization parameter(s) on 
the solution? Would more or less regularization have pro-
duced different outcomes?  
While a recommender system for purchases may not pose 
a threat of imminent harm, what if it were an “expert sys-
tem” in healthcare, providing treatment or therapy sugges-
tions based on patients with similar symptoms? What are 
the criteria for the training and test data sets? How should 
the learning be monitored and the results understood?  

• How might people and organizations adapt to the output of 
the algorithm? Might this adaptation lead to unanticipated 
negative outcomes? 
 
To be fair, many practitioners in the ML world are partner-

ing with experts in various fields to better understand the impli-
cations of their models. The previous points are mentioned to 
point out that without the input of domain experts, ML practi-
tioners often are blind to the implications of their decisions.  

 
Neural Network Example  
 

The recommender systems just described require the per-
son initiating the learning algorithm establish the parameters of 
what is to be learned. In this case it is the features that were 
engineered or labeled in the training dataset. In general, ML 
techniques come in both supervised and unsupervised variants.  
Supervised datasets require some sort of human intervention to 
assign labels to each input sample in the dataset- for example in 
computer vision, this might be the assigning a of label to images 
such as “car”, “truck”, “cat”, or “dog”.  These supervised meth-
ods then automatically learn relationships between data statis-
tics and these labels.  Unsupervised methods do not require this 
labeling step. In unsupervised ML, the algorithm both learns 
statistical features as well as relationships to desired outcomes.  
For example, unsupervised methods can learn lower dimen-
sional representations of data, automatically cluster data, or 
even pre-learn weights for downstream supervised techniques.  

One popular type of unsupervised learning is based on 
neural networks. Neural networks are loosely based on obser-
vations of how neurons in the mammalian cerebral cortex sum-
mate and propagate signals to fellow neurons. In a multi-layer 
perceptron neural network, matrices are used to represent 
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strengths of interactions between processing layers, and sum-
mation and propagation rules are used to transmit a signal (i.e., 
data) between layers. During learning, the difference between 
the network output and the desired outcome is used to adjust the 
weights. The network learning is considered complete when the 
set of weights have been optimized such that the error between 
the output and the desired output are at a minimum.  

One of the more popular methods of working with neural 
networks is through the use of TensorFlow (Ganegedara, 2018), 
an open source machine learning framework, developed by 
Google, that simplifies the processes of setting up and running 
machine learning frameworks, including both unsupervised and 
supervised neural networks. Through TensorFlow and the Py-
thon or R programming languages it is possible to setup a num-
ber of tensors (i.e., input vectors and matrices) and to scale the 
number of layers in the network as needed for the complexity 
of the computation being performed. Relatively complex image 
processing problems requiring convolutional filtering and re-
current time-series data have become more tractable through 
the creation of TensorFlow.  

Layers of neural networks are separated by non-linear ac-
tivation functions which enable the network to learn more com-
plex functions.  Early activation functions of sigmoid and tanh 
have been largely replaced with the ReLU function and its var-
iants.  The ReLU activation function clips all negative values to 
zero, and passes all positive values.  To reduce the number of 
learnable weights, fully connected matrices are often replaced 
with convolutions filters.  To create an abstract hierarchy, data 
reduction layers called pooling layers reduce the data resolu-
tion, allowing the convolution filters to multiple representations 
of the input, similar to how the visual cortex produces different 
representations of visual stimuli.   

A process called backpropagation is used to learn the 
weights in a neural network.  Backpropagation computes the 
partial derivative of the current cost or error of the entire 
network, with respect to each weight in the network.  Modern 
deep neural networks may have as many as 150M weights, 
meaning that for each training sample, 150M partial derivatives 
are computed.  Further, these neural networks often require mil-
lions of training samples, each repeated dozens of times.  The 
process is so computationally intensive, that even with hard-
ware accelerators known as general processing units (GPUs), 
some large neural networks can take days or months to train.  

While it is beyond the scope of this paper to provide a co-
herent example of a neural network model, we can still describe 
the steps in a basic use case as the following:  
1. Clean data into usable elements, such as maximizing pixel 

contrast in an image or parsing speech into words.  
2. Standardize the inputs, such as normalizing data values or 

making sure all speech utterances are the same length.  
3. Convert data into a quantitative expression, such as assign-

ing brightness values or quantifying the length of a word.  
4. Learn relationship between inputs and labels. This is the 

backpropagation step. The data modified from steps 1 - 3 
is processed through the model and the relationship to a 
desired output is learned. The desired output could be de-
termining whether an image contains a face, or whether a 
speech utterance had a positive or negative sentiment.  
 

Optimize the output based on a criterion value. 
At this point, the reader may notice similarities between a neu-
ral network ML process and the recommender system described 
previously in that a large part of the process is involved with 
acquiring, cleaning and preparing the data for processing. Ad-
ditionally, the output is dependent on the choice of criteria used 
to manage the learning process.  
 

APPLICATION OF ML TO AUTOMATION 
 

The foregoing descriptions and discussions of ML tech-
niques serve to demonstrate two fundamental concerns. First, 
despite the advances in the quantitative approaches to ML, there 
are a number of steps requiring human decision making in the 
development of a ML-based model. Everything from the choice 
of the dataset, to the cleaning and labeling of the data in the 
training set, to parameters used to optimize the model require 
the skill of the ML practitioner. While the numerical methods 
are well-described, these decisions require thoughtful planning 
and comparison. Without careful cross-validation, the 
algoithms may appear to perform very well, but then perform 
very poorly when exposed to new data.  

Second, the fidelity of the data and the labels to the real 
world that is being modeled is of central importance to the va-
lidity of the model. The availability of DS tools, such as Ten-
sorFlow and the ubiquity of processing language tools such as 
Python, put ML into many hands, potentially without the sup-
port of subject matter experts to guide the selection of data and 
labels. This leads ML practitioners, in some cases, to claim to 
be studying complex subjects, such as disease states, without 
requisite background knowledge within the medical field.  

To further illustrate these concerns, there is a specific 
problem in the training and evaluation of ML models that is 
concerned with the number of parameters on the training set 
during learning. When a complex model is provided too many 
parameters it is possible to “over fit” to the data, similar to prob-
lems of having too many parameters in a linear regression 
model . That is, the model has learned every nuance of the train-
ing data set and has perfect or near perfect classification perfor-
mance. Unfortunately, its performance on unforeseen data sets 
may be well under what it achieved with the training set.  To 
prevent such problems, the unforeseen test data performance 
needs to be monitored throughout the training time along with 
the training set performance.  Further, the test dataset statistical 
properties should match the training data, both of which should 
match what is expected when the trained model is released in 
product. For example, if all training and testing data was done 
with high resolution cameras, and the model is deployed using 
low resolution cell phone cameras, performance will degrade. 
Knowing when training is enough, knowing how to construct 
training and test sets, and understanding the statistical proper-
ties of each are key elements to the design of a successful ML 
model.  
 
What HFEs Know About Automation  
 

We turn now, briefly, to a summary what the field of HFE 
has already learned from decades of research on human-cen-
tered automation and from studying the failures when humans 
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are not integral in the design process. The syllabus of an Engi-
neering Psychology course taught by one of the authors in-
cludes a segment on automation that is largely based on availa-
ble texts (e.g., Wickens, Hollands, Banbury, & Parasuraman, 
2015; Lee, Wickens, Liu, & Boyle, 2017, and earlier editions), 
and several articles and chapters (e.g., Fitts, 1951; Sheridan, & 
Verplank, 1978; Sarter, Woods, & Billings, 1997; Parasuraman 
& Riley, 1997; Parasuraman, Sheridan, & Wickens, 2000).    
However, as can be seen in the sampling of references common 
in HFE courses taught in universities, they dealt with what may 
be termed as “first-generation” of automation. Even then, tech-
nology has always (or as long as there has been technology) 
been running well ahead of HFE, and the history of HFE has 
been that of playing catch-up. A pertinent question is if there 
are “lessons learned” from past experience that could be applied 
to AI and ML, or is the history merely repeating itself?  
 
HFE Contributions to the New Era of Automation 
 

Given the history of contributions to the world of automa-
tion, particularly in human-machine systems, it is worth spend-
ing some time reconsidering what we know about human-ma- 
chine system automation in light of the advancing push of ML 
and automation. First, with respect to when to automate, there 
clearly are differences between the human factors side and the 
ML side. As noted earlier, there is an explosion of applications 
of ML throughout the sciences and technology. Rather than at-
tempting to automate when needed for safety or efficiency, it 
would appear that ML approaches are being taken because they 
are possible since data are available without the need to deter-
mine if there is a need for the solution for safety or efficiency.  

The question of what is being modeled through ML for 
automation does appear to cover the concerns of the HFE. Dan-
gerous and tedious tasks, such as those that occur in driving are 
actively being developed, as are approaches to problems that 
exceed human capabilities, such as finding patterns in high-di-
mensional data spaces. Yet even here, part of the challenge re-
mains in how to keep the human user or operator engaged and 
knowledgeable about what the system is doing.  

From reading many accounts of ML approaches, it is 
tempting to think that the human is being phased out. Yet, there 
is a far distance between the current recommender systems and 
a future system that automatically knows what we need and 
makes the purchases for us. Unfortunately, many ML projects 
are not considering a hybrid solution that uses a human operator 
as one of the processing elements, or as an interpreter of the 
output. There are exceptions where “usable machine learning” 
is being considered (Fiebrink & Gillies, 2018, Gillies et al., 
2016). For example, before fully autonomous vehicles will be 
unleashed, there will be many iterations of human-assisted ML 
models.  Cruise control systems have been augmented with 
ML-based automated braking and vehicle following.  Driver as-
sistance such as drowsiness detection, lane detection and fol-
lowing, blind spot detection, and high-beam light switching are 
all possible because of ML. Although full autonomy is still only 
possible in constrained scenarios, these ML methods are aiding 
the human driver, making driving safer.   

We know from experience that there are unintended con- 
sequences from overreliance on automation. The primary 

problem with AI and ML is that they are not transparent. 
“Clumsy Automation” and "Automation Surprises” terms were 
coined in the 80s and the concepts are applicable to AI/ML, too. 
Human operators (mostly pilots in the 80s and 90s) ran into 
trouble when they could not understand what autopilots were 
doing, and those were more straightforward, deterministic sys-
tems. Today’s algorithms  are more capable, dangerous, and can 
cause more operator confusion (as recently illustrated with the 
Boeing 737 flight accidents). Automation based on AI/ML will 
be completely opaque and its actions inscrutable by humans.  

Back in the 80s there were plenty of high-profile, tragic, 
aircraft crashes that were scrutinized and that brought up the 
problems with autopilots that were beyond pilots’ training. If 
AI-based diagnostic systems misdiagnose one patient at a time 
at some (relatively low) rate, nobody will pay attention, or 
bother to collect such instances as data. There may be incident 
reporting systems in healthcare that could be accessed and ana-
lyzed, but that is just one domain of AI/ML applications.  

There is no reason to believe that this will not continue to 
be true in the world of ML models that drive automation. In 
particular, as ML models are able more to mimic elements of 
human behavior and decision making, there may be an in-
creased tendency to trust these models beyond a prudent level. 
Reconsider the recommender system that suggested the right 
additional products to solve someone’s shopping needs. When 
the system starts acting like it has unique knowledge it becomes 
easier to trust, and harder to decide to counteract when needed.  

In addition to the influence of AI/ML substituting human 
decision making in high risk industries is the impact of AI/ML 
on safety and operational data analysis.  Traditional techniques 
rely on event data to understand causal factors and develop so-
lutions to prevent recurrence.  This approach often is limited by 
the volume of data and, therefore, the availability of applicable 
and effective models and tools.  ML adds the dimension of non-
event data, from which a more meaningful algorithm can be de-
rived to detect patterns across a variety of features that may im-
pact an event outcome.  ML in the context of safety and opera-
tional data collection, processing, analysis, and automated ac-
tion is an area for further exploration in high-risk industries. 
 
Educating HFEs for Roles in Automation and ML 
 

Although teaching about human-machine systems and au-
tomation is a fundamental element of a human factors engineer-
ing education, as practitioners and educators in this field, the 
authors find that the current curriculum has not kept pace with 
the advances in ML and DS in general. In fact, there are coun-
terproductive forces stemming from the push toward under-
standing the user experience that lead away from understanding 
automation and toward a greater trust of automation. Yet, it is 
our belief that as with the automation failures of years past, 
HFEs will continue to be called upon to address human-system 
automation design of the current and future ML era.  

Toward that end, the following ideas are offered as modi-
fications to the education of human factors engineers in an ef-
fort to better prepare them for active participation in the design 
of the ML-driven automation projects of the future: 
1. Human factors engineers need an understanding of DS. 

This may be taught within existing courses on behavioral 
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data analysis or analytical methods or may require a unique 
course. Concepts such as unsupervised and supervised 
learning and cross-validation may be naturally included in 
advanced statistics courses.  

2. Working with large data sets requires familiarity with some 
type of programming tools. While a deep knowledge of 
C++ may not be needed, scripting languages such as Py-
thon, MATLAB, or R are needed to manipulate datasets, 
visualize data, and to make sense of ML outputs.  

3. As effective ML practitioner, students must have an intro-
duction to the array of ML models and their applications.  
DS problems will vary with input and outcome data, which 
will direct the ML approaches to consider.  Decision trees 
to guide the choice of modeling techniques can be effective 
tools, followed by learning methods.  Real-world examples 
can highlight the impact of ML on prediction compared to 
traditional techniques, and expose model limitations and 
ways to address them. 

4. Many ML algorithms can be described in mathematical 
symbology, often times utilizing calculus and/or differen-
tial equations. Indeed, the concept of optimization utilizes 
these advanced mathematical concepts and without them 
requires extensive narrative to explain the process. How-
ever, it is the drive toward optimization that creates some 
of the unique difficulties and opportunities for contribu-
tions by the human factors engineer. Understanding ad-
vanced mathematics is not a factor behind the choice of a 
human factors career. Therefore, we need to efficiently and 
systematically describe optimization in terms understanda-
ble by a non-mathematical audience. This will expose op-
portunities for HFEs to make more contributions.  

5. In general, the “usable machine learning” movement has 
espoused greater emphasis on how to frame ML questions, 
how to understand what is going on with processing itera-
tions, and how data are being visualized. More research 
will lead to better teaching. This could include develop-
ment of specific content in ML techniques with annotation 
and exploration of the implications of the optimization on 
human decision making. For example, work through mul-
tiple versions of a problem with different data label defini-
tions to understand how the labeling affects the outcome.  

6. Increase the challenge to students of HFE to become better 
consumers of the ML and automation literature and prepare 
them to participate effectively in ML projects. Make it an 
imperative that they know what questions to ask.  

7. Initiate student-led research into turning user requirements 
into ML considerations. These results can better inform 
how the initial data set is created and how features or de-
sired outcomes are labeled.  

8. Initiate student-led research into designing a human/ ML 
system? Are there alternatives to a completely optimized 
approach? Designing a ML system for use by a non-DS 
practitioner is the perfect opportunity for an HFE student. 

 
CONCLUSION 

 
It is noted that existing courses within a university may be 

sufficient for meeting these goals. However, it might be more 

appropriate to develop the unique content for HFEs.  The pur-
pose of this paper is to initiate a broad and vivid discussion on 
new forms of automation afforded by ML and AI. This discus-
sion should start with a review of the history with automation 
and HFE, and then approach the  era of AI/ML within this cau-
tionary framework. We wish to highlight the significant chal-
lenges ML/AI present to human-centered technology. We look 
forward  to the furthering of the discussion over time to high-
light how HF may or may not be participating.  

A topic this large needs a multi-year approach. After the 
initial discussion this year, we hope to bring a large number of 
the best and brightest minds in our community to address both 
the apparent and potential problems with ML/AI-based automa-
tion. In subsequent years, we will bring experienced ML/AI 
practitioners/modelers to discuss their work in ML and automa-
tion and openly debate the interactions with human users. Other 
topics to be explored include the HF/E training concepts around 
ML and AI that we need to start providing to future HFEs.  
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